Аннотация к работе!

 

На уроке истории мы познакомились с картиной «Устный счёт», меня заинтересовала эта тема, потому что, на каждом уроке  все  считают устно и это один из моих любимых этапов урока математики. В фильме я постарался показать в сравнении, устный счёт  в дореволюционной школе и современной. Видео - кадры взяты с реального  урока.  Навыки устного счёта помогают стать внимательным, рефлексивным, после ответа я вижу свои ошибки, закаляется мой характер и волю к отличным результатам. Путь, к решению жизненных проблем, начинается в школе – в  работе над собой! И математика, как известно, приводит ум в порядок! И я, с М. Ломоносовым, согласен. 

В работе использованы исторические факты и математические рассуждения по теме:

Последовательности Рачинского для счета в уме

Для решения знаменитой задачи Рачинского можно также использовать и дополнительные знания о закономерностях суммы квадратов. Речь идет именно о тех суммах, которые называются последовательностями Рачинского. Так математически можно доказать, что следующие суммы квадратов равны:

  • 32+42 = 52 (обе суммы равняются 25)
  • 102+112+122 = 132+142 (сумма равняется 365)
  • 212+222+232+242 = 252+262+272 (что составляет 2030)
  • 362+372+382+392+402 = 412+422+432+442 (что равняется 7230)

Чтобы найти любую другую последовательность Рачинского, достаточно просто составить уравнение следующего вида (обратите внимание, что всегда в такой последовательности справа количество суммируемых квадратов на один меньше, чем слева):

n+ (n+1)= (n+2)2

Это уравнение сводится к квадратному уравнению и легко решается. В данном случае «n» равняется 3, что соответствует первой последовательности Рачинского, описанной выше (32+42 = 52).

Таким образом, решение знаменитого примера Рачинского, можно произвести в уме еще быстрее, чем было описано в данной статье, просто зная вторую последовательность Рачинского, а именно:

102+112+122+132+142 = 365 + 365

В итоге уравнение с картины Богдана-Бельского принимает вид (365 + 365)/365, что, несомненно, равняется двум.

Также последовательность Рачинского может пригодиться и для решения других задач из сборника "1001 задача для умственного счета" Сергея Рачинского.